

VOLVO PENTA GENSET ENGINE

TAD1342GE

343 kW (466 hp) at 1500 rpm, 395 kW (537 hp) at 1800 rpm, acc. ISO 3046

The TAD1342GE is a powerful, reliable and economical Generating Set Diesel Engine built on the dependable Volvo in-line six concept.

Durability & low noise

Designed for easy, fast and economical installation. Field tested to ensure highest standard of durability and long life. Well-balanced to produce smooth and vibration-free operation with low noise level.

To maintain a controlled working temperature in cylinders and combustion chambers, the engine is equipped with piston cooling. The engine is also fitted with replaceable cylinder liners and valve seats/guides to ensure maximum durability and service life of the engine.

Low exhaust & noise emission

The state of the art, high-tech injection and highly efficient charge air system with low internal losses contributes to excellent combustion and low fuel consumption.

The TAD1342GE is EU Stage 2 emission certified. An electronically controlled viscous fan drive is available giving substantially lower noise and fuel consumption.

Easy service & maintenance

Easily accessible service and maintenance points contribute to the ease of service of the engine.

Technical description

Engine and block

- Cast iron cylinder block with optimum distribution of forces without the block being unnecessarily heavy.
- Wet, replaceable cylinder liners
- Piston cooling for low piston temperature and reduced ring temperature
- Tapered connecting rods for increased piston lifetime
- Crankshaft induction hardened bearing surfaces and fillets with seven bearings for moderate load on main and high-end bearings
- Case hardened and Nitrocarburized transmission gears for heavy duty operation
- Keystone top compression rings for long service life
- Viscous type crankshaft vibration dampers to withstand single bearing alternator torsional vibrations
- Replaceable valve guides and valve seats
- Over head camshaft and four valves per cylinder

Features

- Excellent load acceptance
- Highly efficient cooling system
- Dual Speed 1500 / 1800 rpm
- EMS 2
- EU Stage 2 emission certified
- Wide range of optional equipment including visco fan.

Lubrication system

- Full flow oil cooler
- Full flow disposable spin-on oil filter, for extra high filtration
- The lubricating oil level can be measured during operation
- Gear type lubricating oil pump, gear driven by the transmission

Fuel system

- Electronic high pressure unit injectors
- Fuel prefilter with water separator and water-in-fuel indicator / alarm
- Gear driven low-pressure fuel pump
- Fine fuel filter with manual feed pump and fuel pressure switch

Cooling system

- Efficient cooling with accurate coolant control through a water distribution duct in the cylinder block. Reliable sleeve thermostat with minimum pressure drop
- Belt driven coolant pump with high degree of efficiency
- Electronically controlled viscous fan drive provides lower noise and fuel consumption (optional).

Turbo charger

- Efficient and reliable turbo charger
- Electronically controlled Waste-gate
- Extra oil filter for the turbo charger

Electrical system

- Engine Management System 2 (EMS 2), an electronically controlled processing system which optimizes engine performance. It also includes advanced facilities for diagnostics and fault tracing.
- Possibility to perform a start battery test according to the NCPA requirements via CAN bus signals.
- The instruments and controls connect to the engine via the CAN SAE J1939 interface, either through the Control Interface Unit (CIU) or the Digital Control Unit (DCU). The CIU converts the digital CAN bus signal to an analog signal, making it possible to connect a variety of instruments. The DCU is a control panel with display, engine control, monitoring, alarm, parameter setting and diagnostic functions. The DCU also presents error codes in clear text.
- Sensors for oil pressure, oil temp, boost pressure, boost temp, coolant temp, fuel temp, water in fuel, fuel pressure and two speed sensors.

TAD1342GE

Technical Data

General

Engine designation	TAD1342GE	
No. of cylinders and configuration	in-line 6	
Method of operation	4-stroke	
Bore, mm (in.)	131 (5.16)	
Stroke, mm (in.)	158 (6.22)	
Displacement, l (in³)	12.78 (780)	
Compression ratio	18.1:1	
Wet weight, engine only, kg (lb)	1325 (2921)	
Wet weight with Gen Pac, kg (lb)	1790 (3946)	

Performance

	1500 rpm	1800 rpm
with fan, kW (hp) at:		
Prime Power	303 (412)	345 (469)
Standby Power	333 (453)	377 (513)

Lubrication system

	1500 rpm	1800 rpm
Oil consumption, liter/h (US gal/h) at:		
Prime Power	0.04 (0.011)	0.05 (0.013)
Standby Power	0.04 (0.011)	0.05 (0.013)
Oil system capacity incl filters, liter	36	

Fuel system

	1500 rpm	1800 rpm
Specific fuel consumption at:		
Prime Power, g/kWh (lb/hph)		
25 %	224 (0.363)	237 (0.384)
50 %	201 (0.326)	207 (0.336)
75 %	193 (0.313)	200 (0.324)
100 %	191 (0.310)	201 (0.326)
Standby Power, g/kWh (lb/hph)		
25 %	220 (0.357)	231 (0.374)
50 %	198 (0.321)	205 (0.332)
75 %	193 (0.313)	200 (0.324)
100 %	191 (0.310)	201 (0.326)

Intake and exhaust system

	1500 rpm	1800 rpm
Air consumption, m³/min (cfm) at:		
Prime Power	24.6 (869)	28.7 (1014)
Standby Power	25.9 (915)	28.7 (1014)
Max allowable air intake restriction, kPa (PSI)	5 (0.7)	
Exhaust gas temperature after turbine, °C (°F) at:		
Prime Power	395 (743)	423 (793)
Standby Power	408 (766)	481 (898)
Max allowable back-pressure in exhaust line, kPa (PSI)	10 (1.5)	
Exhaust gas flow, m³/min (cfm) at:		
Prime power	53.5 (1889)	65.0 (2295)
Standby Power	57.0 (2013)	69.5 (2454)

Cooling system

	1500 rpm	1800 rpm
Fan power consumption, std ratio, kW (hp)	10 (14)	18 (24)

Cooling performance

	1500 rpm	1800 rpm
AOT at max cooling air flow, °C (°F):		
Prime Power	68 (154)	66 (151)
Standby Power	65 (149)	61 (142)
Max cooling air flow, m³/s (cfs)	6.7 (237)	8.2 (290)

Standard equipment

Engine

Automatic belt tensioner	•	•
Lift eyelets	•	•
Flywheel		
Flywheel housing with conn. acc. to SAE 1	•	•
Flywheel for 14" flex. plate and flexible coupling	•	•

Engine suspension

Fixed front suspension	•	•
------------------------	---	---

Lubrication system

Oil dipstick	•	•
Full-flow oil filter of spin-on type	•	•

By-pass oil filter of spin-on type	•	•
------------------------------------	---	---

Oil cooler, side mounted	•	•
--------------------------	---	---

Low noise oil sump	•	•
--------------------	---	---

Fuel system

Fuel filters of disposable type	•	•
Electronic unit injectors	•	•

Pre-filter with water separator	•	•
---------------------------------	---	---

Intake and exhaust system

Air filter with replaceable paper insert	•	•
--	---	---

Air restriction indicator	•	•
---------------------------	---	---

Air cooled exhaust manifold	•	•
-----------------------------	---	---

Connecting flange for exhaust pipe	•	•
------------------------------------	---	---

Exhaust flange	•	•
----------------	---	---

Turbo charger, low right side	•	•
-------------------------------	---	---

Cooling system

Radiator incl intercooler	•	•
---------------------------	---	---

Coolant pump	•	•
--------------	---	---

Fan hub	•	•
---------	---	---

Pusher fan	•	•
------------	---	---

Fan guard	•	•
-----------	---	---

Belt guard	•	•
------------	---	---

Control system

Engine Management System (EMS) with CAN-bus interface SAE J1939	•	•
---	---	---

Alternator

Alternator 80 A	•	•
-----------------	---	---

Starting system

Starter motor	•	•
---------------	---	---

Connection facility for extra starter motor	•	•
---	---	---

Instruments and senders

Temp.- and oil pressure for automatic stop/alarm	•	•
--	---	---

Other equipment

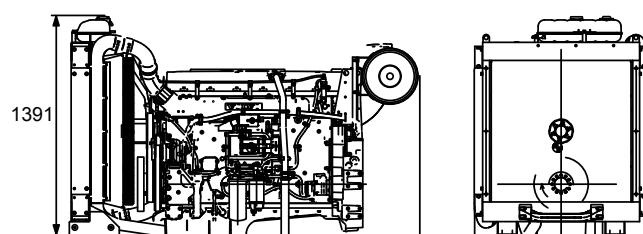
Expandable base frame	•	•
-----------------------	---	---

Engine Packing

Plastic wrapping	•	•
------------------	---	---

1) must be ordered, see order specification

2) Available later


– optional equipment or not applicable

• included in standard specification

For our wide range of optional equipment, please see Order specification.

Dimensions TAD1342GE

Not for installation

Note! Not all models, standard equipment and accessories are available in all countries.

All specifications are subject to change without notice.

The engine illustrated may not be entirely identical to production standard engines.

Power Standards

The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271. The technical data applies to an engine without cooling fan and operating on a fuel with calorific value of 42.7 MJ /kg (18360 BTU/lb) and a density of 0.84 kg/liter (7.01 lb/US gal), also where this involves a deviation from the standards. Power output guaranteed within 0 to +2% at rated ambient conditions at delivery. Ratings are based on ISO 8528, Engine speed governing in accordance with ISO 3046/IV, class A1 and ISO 8528-5 class G3. **Exhaust emissions**

The engine complies with EU stage 2 emission legislation according to the Non Road Directive EU 97/68/EEC. The engine also complies with TA-luft -50% exhaust emission regulations.

Rating Guidelines

PRIME POWER rating corresponds to ISO Standard Power for continuous operation. It is applicable for supplying electrical power at variable load for an unlimited number of hours instead of commercially purchased power. A10 % overload capability for governing purpose is available for this rating.

STANDBY POWER rating corresponds to ISO Standard Fuel Stop Power. It is applicable for supplying standby electrical power at variable load in areas with well established electrical networks in the event of normal utility power failure. No overload capability is available for this rating.

1 hp = 1 kW x 1.36